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Abstract 

Instruction cache miss latency is becoming an increasingly important performance bottleneck, espe- 
cially for commercial applications. Although instruction prefetching is an attractive technique for 
tolerating this latency, we find that existing prefetching schemes are insufficient for modern super- 
scalar processors since they fail to issue prefetches early enough (particularly for non-sequential ac- 
cesses). To overcome these limitations, we propose a new instruction prefetching technique whereby 
the hardware and software cooperate to hide the latency as follows. The hardware performs aggres- 
sive sequential prefetching combined with a novel prefetch filtering mechanism to allow it to get far 
ahead without polluting the cache. To hide the latency of non-sequential accesses, we propose and 
implement a novel compiler algorithm which automatically inserts instruction-prefetch instructions 
into the executable to prefetch the targets of control transfers far enough in advance. Our experi- 
mental results demonstrate that this new approach results in speedups ranging from 9.4% to 18.5% 
(13.3% on average) over the original execution time on an out-of-order superscalar processor, which 
is more than double the average speedup of the best existing schemes (6.5%). This is accomplished 
by hiding an average of 71% of the original instruction stall time, compared with only 36% for the 
best existing schemes. We find that both the prefetch filtering and compiler-inserted prefetching 
components of our design are essential and complementary, that the compiler can limit the code 
expansion to less than 10% on average, and that our scheme is robust with respect to variations in 
miss latency and bandwidth. 

Todd C Mowry is partially supported by a Faculty Development Award from IBM. Chi-Keung Luk is 
partially supported by a Canadian Commonwealth Fellowship. 
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1    Introduction 

Memory latency is a key performance bottleneck in modern microprocessor-based systems. The 
relative importance of memory latency is expected to increase as the gap between processor and 
memory speeds continues to grow, and as wider-issue processors increase the effective performance 
penalty of each cycle of latency. While techniques for coping with data access latency have received 
considerable attention, it is also important to address the latency of fetching instructions. Although 
instruction cache hierarchies are an essential first step toward coping with this problem, they are 
not a complete solution. For example, a study conducted by Maynard et al. [7] demonstrates that 
many commercial applications suffer from relatively large instruction cache miss rates (e.g., over 
20% in an 8KB cache) due to their large instruction footprints and poor instruction localities. To 
further tolerate this latency, one attractive technique is to automatically prefetch instructions into 
the cache before they are needed. 

1.1    Previous Work on Instruction Prefetching 

There has been a long history of research on instruction prefetching. We will begin by discussing and 
then quantitatively evaluating four of the most promising techniques that have been proposed to 
date, all of which are purely hardware-based: next-N-line prefetching [10, 11], target-line prefetch- 
ing [12], wrong-path prefetching [8], and Markov prefetching [3]. 

Before we begin our discussion, we briefly introduce some prefetching terminology. The coverage 
factor is the fraction of original cache misses that are prefetched. A prefetch is unnecessary if the line 
is already in the cache (or is currently being fetched), and is useless if it brings a line into the cache 
which will not be used before it is displaced. An ideal prefetching scheme would provide a coverage 
factor of 100% and would generate no unnecessary or useless prefetches. In addition, the timeliness 
of when prefetches are launched is also crucial. The prefetching distance is the elapsed time between 
when the prefetch is initiated and when the prefetched instruction is used. The prefetching distance 
should be large enough to fully hide the cache miss latency, but not so large that the line is likely 
to be displaced by other accesses before it can be used (i.e. a useless prefetch). 

As its name implies, the idea behind next-N-line prefetching [10, 11] is to prefetch the N se- 
quential lines following the one currently being fetched by the CPU. A larger value of N tends to 
increase the prefetching distance, but also increases the likelihood of polluting the cache with useless 
prefetches. The optimal value of N depends on the line size, the cache size, and the behavior of 
the application itself. To increase the likelihood that these prefetched sequential lines will be used, 
the hardware can postpone launching a prefetch until the current instruction falls within a specified 
distance (called the fetch-ahead distance) of the end of its line [12]. Next-JV-line prefetching captures 
sequential execution as well as control transfers where the target falls within the next N lines. It is 
usually included as part of other more complex instruction prefetching schemes, and based on our 
experiments, it accounts for most of the performance benefit of these schemes. 

One limitation of next-TV-line prefetching is that it does not prefetch control transfer targets 
which do not fall within the TV fall-through lines. To address this limitation, Smith and Hsu [12] 
proposed target-line prefetching which uses a prediction table to record the address of the line which 
most recently followed a given instruction line, thus enabling hardware to prefetch targets whenever 
an entry is found in this table. They observed that combining target-line prefetching with next-1-line 
prefetching produced significantly better results than either technique alone. 

Rather than relying on a history table to predict likely target addresses, Pierce and Mudge [8] 
proposed a scheme called wrong-path prefetching which combines next-TV-line prefetching with always 
prefetching the target of control transfers with static target addresses (including procedure calls, 
conditional and unconditional branches). Hence for conditional branches, both the target and fall- 
through lines will always be prefetched. However, since target addresses cannot be determine early, 
this scheme only outperforms next-TV-line prefetching when a conditional branch is initially untaken 
but later taken (assuming that enough time has passed in between to hide the latency of fetching 
the target line, but not so much time that the line has been displaced). Their results indicated that 
wrong-path prefetching performed slightly better than next-1-line prefetching on average. 



Table 1: Parameters used in the evaluation of existing instruction prefetching techniques. 

Technique 
# of Sequential 

Lines Prefetched 
Target Prefetching Parameters 

# of Targ ets Table Size Table Indexing Method 

Next-7V-Line N = 2, 4, 8 0 0 N/A 
Target-Line 2 1 64 entries direct-mapped with tags 
Wrong-Path 2 1 0 N/A 

Markov 2 2 512 KB direct-mapped with tags 

Joseph and Grunwald [3] proposed Markov prefetching which is applicable to both instruction 
and data cache misses. This mechanism correlates the current cache miss address with the next miss 
address and stores this information in a miss-address prediction table using the current miss address 
as the index. Multiple predicted addresses can be associated with a given miss address. Upon a 
cache miss, prefetches are issued for these predicted addresses. The Joseph and Grunwald study 
focused primarily on data cache misses, and did not compare Markov prefetching with techniques 
designed specifically for prefetching instructions. 

Finally, we note that while a previous study by Xia and Torrellas [13] considered instruction 
prefetching for codes where the layout has already been optimized using profiling information, we 
focus only on techniques which do not require changes to the instruction layout in this study. 

1.1.1     Performance of Existing Instruction Prefetching Techniques 

To quantify the performance benefits and limitations of the four prefetching techniques described 
above, we implemented each of them within a detailed, cycle-by-cycle simulator which models an 
out-of-order four-issue superscalar processor based on the MIPS R10000 [14]. We model a two-level 
cache hierarchy with split 32 KB, two-way set-associative primary instruction and data caches and 
a unified 1 MB, four-way set-associative secondary cache. Both levels use 32 byte lines. The penalty 
of a primary cache miss that hits in the secondary cache is at least 12 cycles, and the total penalty of 
a miss that goes all the way to memory is at least 75 cycles (plus any delays due to contention, which 
is modeled in detail). To provide better support for instruction prefetching, we further enhanced the 
primary instruction cache relative to the R10000 as follows: we divide it into four separate banks, 
and we add an eight-entry victim cache [4] and a 16-entry prefetch buffer [3]. Further details on our 
experimental framework will be presented later in Section 5. 

Table 1 summarizes the parameters used throughout our experiments for each of the prefetching 
schemes. These parameters were chosen through experimentation in an effort to maximize the 
performance of each scheme. All schemes effectively include next-2-line prefetching.1 We do not 
use the fetch-ahead distance mechanism [12] to throttle back prefetching. When a target is to be 
prefetched, we prefetch two consecutive lines starting at the target address. 

Figure 1 shows the performance impact of each prefetching scheme on a collection of seven 
non-numeric applications (which are described in more detail later in Section 5). We show three 
different versions of next-JV-line prefetching (where N = 2, 4, and 8) in Figure 1, along with the 
original case without prefetching (O) and the case with a perfect instruction cache (P). Each bar 
represents execution time normalized to the case without prefetching, and is broken down into three 
categories explaining what happened during all potential graduation slots.2 The bottom section 
(Busy) is the number of slots when instructions actually graduate, the top section (I-Miss Stall) 
is any non-graduating slots that would not occur with a perfect instruction cache, and the middle 
section (Other Stall) is all other slots where instructions do not graduate. 

We observe from Figure 1 that despite significant differences in complexity and hardware cost, 
the various prefetching schemes offer remarkably similar performance, with no single scheme clearly 

1 We added next-2-Iine prefetching to Markov prefetching (despite the fact that this was not in the original de- 
sign [3]) because this provides better performance than Markov prefetching alone. 

2 The number of graduation slots is the issue width (4 in this case) multiplied by the number of cycles. We focus 
on graduation rather than issue slots to avoid counting speculative operations that are squashed. 
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Figure 1: Performance of existing instruction prefetching techniques (O = original, Na; = next-«-line 
prefetching, T = target-line prefetching, W = wrong-path prefetching, M = Markov prefetching, 
P = perfect instruction cache). 

dominating. Perhaps surprisingly, the best performance is achieved by either next-4-line or next-8- 
line prefetching in all cases except perl; even in perl, next-4-line prefetching is still within 1% of 
the best case. The reason for this is that the bulk of the benefit offered by each of these schemes is 
due to prefetching sequential accesses. 

Finally, we see in Figure 1 that these schemes are hiding no more than half of the stall time 
due to instruction cache misses. Through a detailed analysis of why these schemes are not more 
successful (further details are presented later in Section 6.1), we observe that although the coverage 
is generally quite high, the real problem is the timeliness of the prefetches—i.e. prefetches are not 
being launched early enough to hide the latency. Hence there is significant room for improvement 
over these existing schemes. 

1.2    Our Solution 

To hide instruction cache miss latency more effectively in modern microprocessors, we propose and 
evaluate a new fully-automatic instruction prefetching scheme whereby the compiler and the hard- 
ware cooperate to launch prefetches earlier (therefore hiding more latency) while at the same time 
maintaining high coverage and actually reducing the impact of useless prefetches relative to today's 
schemes. Our approach involves two novel components. First, to enable more aggressive sequential 
prefetching without polluting the cache with useless prefetches, we introduce a new prefetch filtering 
hardware mechanism. Second, to enable more effective prefetching- of non-sequential accesses, we 
introduce a novel compiler algorithm which inserts explicit instruction-prefetch instructions into the 
executable to prefetch the targets of control transfers far enough in advance. Our experimental 
results demonstrate that our scheme provides significant performance improvements over existing 
schemes, eliminating roughly 50% or more of the latency that had remained with the best existing 
scheme. 

This paper is organized as follows. We begin in Section 2 with an overview of our approach, and 
then present further details on the architectural and compiler support in Sections 3 and 4. Sections 5 
and 6 present our experimental methodology and our experimental results, and finally we conclude 
in Section 7. 

2    Cooperative Instruction Prefetching 

We begin this section with a high-level overview of how our prefetching scheme works. To make our 
approach concrete, we also present some examples illustrating how prefetches are inserted. 



2.1     Overview of the Prefetching Algorithm 

As we mentioned earlier, the key challenge in designing a better instruction prefetching scheme is 
to be able to launch prefetches earlier—i.e. to achieve a larger prefetching distance. Let us consider 
the sequential and non-sequential portions of instruction streams separately. 

2.1.1 Prefetching Sequential Accesses 

Since the addresses within sequential access patterns are trivial to predict, they are well-suited to a 
purely hardware-based mechanism such as next-TV-line prefetching. To get far enough ahead to fully 
hide the latency, we would like to choose a fairly large value for N (e.g., N = 8 in our experiments). 
However, the problem with this is that larger values of N increase the probability of overshooting 
the end of the sequence and polluting the cache with useless prefetches. For example, next-8-line 
prefetching performs worse than next-4-line prefetching for four cases in Figure 1 (perl, porky, 
postgres, and skweel) due to this effect. 

The ideal solution would be to prefetch ahead aggressively (i.e. with a large N) but to stop once 
the end of the sequence is reached. Xia and Torrellas [13] proposed a mechanism for doing this which 
involves having software explicitly mark the likely end of a sequence with a special bit. In contrast, 
we achieve a similar effect using a more general prefetch filtering mechanism which automatically 
detects and discards useless prefetches before they have a chance to pollute the instruction cache. 
We will explain how the prefetch filter works in detail later in Section 3.3.1, but the basic idea is to 
use two-bit saturating counters stored in the secondary cache tags to dynamically detect cases where 
lines have been repeatedly prefetched into the primary instruction cache but were not accessed before 
they were displaced (i.e. useless prefetches). When prefetches for such lines subsequently arrive at 
the secondary cache, they are simply dropped. One advantage of our approach is that it adapts to 
the dynamic branching behavior of the program, rather than relying on static predictions of likely 
control flow paths. In addition, our filtering mechanism is equally applicable to non-sequential as 
well as sequential prefetches. 

2.1.2 Prefetching Non-Sequential Accesses 

In contrast with sequential access patterns, purely hardware-based prefetching schemes are far less 
successful at prefetching non-sequential instruction accesses early enough. Wrong-path prefetching 
does not attempt to predict the target address of a given branch early, but instead hopes that 
the same branch will be revisited sometime in the not-too-distant future with a different branch 
outcome. Both target-line and Markov prefetching rely on building up history tables to predict 
addresses to prefetch along control targets. However, if a control transfer is encountered for the 
first time or if its entry has been displaced from the finite history table, then its target will not be 
prefetched.3 Perhaps more importantly, even if a valid entry is found in the history table, it is often 
too late to fully hide the latency of prefetching the target since the processor is already accessing 
the line containing the branch. 

To overcome these limitations, we rely on software rather than hardware to launch non-sequential 
instruction prefetches early enough. To avoid placing any burden on the programmer, we use the 
compiler to insert these new instruction-prefetching instructions automatically. As we describe 
in further detail later in Section 4, our compiler algorithm moves prefetches back by a specified 
prefetch-scheduling distance while being careful not to insert prefetches that would be redundant 
with either next-TV-line prefetching or other software instruction prefetches. Since many control 
transfers within procedures have targets within the N lines covered by our next-TV-line prefetcher, 
the bulk of the instructions inserted by our compiler algorithm are for prefetching across proce- 
dure boundaries. Hence, although it is an oversimplification, one could think of our scheme as 
being primarily hardware-based for intraprocedural prefetching, and primarily software-based for 
interprocedural prefetching. 

3 Note that although our prefetch filtering mechanism can also potentially suffer from the limitations of learning 
within a finite table, we find that it is far more important to prefetch target addresses early enough rather than 
filtering out all useless prefetches. 
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Figure 2: Examples of prefetch insertion for different types of target addresses, (pf _d = prefetch a 
direct address, pf _r = prefetch a return address, pf _i = prefetch an indirect-jump target address.) 

While direct control transfers (i.e. ones where the target address is statically known) are handled 
in a straightforward way by our algorithm, indirect jumps require some additional support in order 
for software to generate the target addresses early. We consider two separate cases of indirect jumps: 
procedure returns, and all other indirect jumps. Since procedure return addresses can be easily 
predicted through the use of a return address stack [5], we simply use a special prefetch instruction 
which implicitly uses the top of the return address stack as its argument.4 To predict the target 
addresses of other indirect jumps, we use a hardware structure called an indirect-target table which 
records past target addresses of individual indirect jump instructions, and which is indexed using 
the instruction addresses of indirect jumps themselves. A prefetch instruction designed to prefetch 
the target of an indirect jump i conceptually stores the instruction address of i, which is then used 
to index the indirect-target table to retrieve the actual target addresses to prefetch. (Note that an 
indirect-target table is considerably smaller than the tables used by either target-line or Markov 
prefetching since it only contains entries for active indirect jumps other than procedure returns.) 

While the advantage of software-controlled instruction prefetching is that it gives us greater 
control over issuing prefetches early, the potential drawbacks are that it increases the code size 
and effectively reduces the instruction fetch bandwidth (since the prefetch instructions themselves 
consume part of the instruction stream). Fortunately, our experimental results demonstrate that 
this advantage outweighs any disadvantages. 

4 Although one could also imagine using the return address register as an explicit argument to the prefetch instruc- 
tion, this may complicate the processor by creating a new datapath from the register file to the instruction fetcher. 
In general, we would like to avoid instruction-prefetch instructions which have register arguments. 



2.2    Examples of Prefetch Insertion 

To make our discussion more concrete, Figure 2 contains three examples of how different types of 
prefetches are inserted. We assume the following in these examples: a cache line is 32 bytes long; 
an instruction is four bytes long (hence one cache line contains eight instructions); hardware next-8 
line prefetching is enabled; and the prefetch-scheduling distance is 20 instructions. 

Figure 2(a) shows two procedures, main() and foo(), where main() contains five basic blocks 
(labeled A through E). Two prefetches have been inserted at the beginning of basic block A: one 
targeting block E, and the other targeting procedure foo(). There is no need to insert software 
prefetches for blocks B, C or D at A since they will already be handled by next-8-line prefetching. 
The prefetch targeting E is inserted in block A rather than in block C in order to guarantee a 
prefetching distance of at least 20 instructions. Although there are two possible paths from A to 
foo() (i.e. A—>-B—>-D—>foo() and A->C—>D—>-foo()), the compiler inserts only a single prefetch of 
foo() in A (rather than inserting one in A and one in B) because (i) A dominates5 both paths, and 
(ii) the compiler determines that these prefetched instructions are not likely to be displaced by other 
instructions fetched along the path A->B—»D—KfooQ. 

Figure 2(b) shows an example of prefetching return addresses. The prefetches in procedures 
bar() and foo() get their addresses from the top of the return address stack—i.e. 3204 and 1004, 
respectively. Finally, Figure 2(c) shows an example where a prefetch is inserted to prefetch the 
target address of the indirect jump at address 8192 before the actual target address is known (i.e. 
the value register R has not been determined yet). Hence the prefetch has 8192 as its address 
operand to serve as an index into the indirect-target table. Three target addresses are predicted for 
this indirect jump, and all of them will be prefetched. 

3    Architectural Support 
Our prefetching scheme requires new support from the architecture. In this section, we describe 
how we extend the instruction set architecture, the impact that these new instructions have on the 
pipeline, and the new hardware that we add to the memory system (including the prefetch filter). 

3.1     Extensions to the Instruction Set Architecture 

Without loss of generality, we assume a base instruction set architecture (ISA) similar to the MIPS 
ISA [6]. Within a 32-bit MIPS instruction, the high-order six bits contain the opcode. For the 
jump-type instructions which implement static procedure calls, the remaining 26 bits contain the 
low-order bits of the target word address. We will use this same instruction format as our starting 
point. 

There are many ways to encode our new instruction-prefetch instructions, and Figure 3(a) shows 
just one of the possibilities. An opcode is designated to identify instruction-prefetch instructions. 
In contrast with the standard jump-type instruction format, we assume that 24 bits (bits 2 through 
25) contain information for computing the prefetch address(es), bits 1 and 0 indicate one of the 
four prefetch types. The prefetch type pf _d stores a single prefetch address in a format similar to a 
MIPS jump address. The only difference is that since the lower two bits are ignored, it effectively 
encodes a 16-byte-aligned address.6 The pf _c type is a compact format which encodes two target 
addresses within the 24-bit field in the form of offsets between the target address lines and the 
prefetch instruction line itself (again, a single offset bit represents 16 bytes); each offset is 12 bits 
wide. The remaining two types are for prefetching indirect targets — pf _r is for procedure returns, 
and pf-i is for general indirect-jump targets. A pf-r prefetch does not require an argument since 
it implicitly uses the top of the return address stack as its address. A pf _i prefetch encodes the 
word offset between itself and the indirect-jump instruction that it is prefetching.  To look up the 

5 Node d of a flow graph dominates node n if every path from the initial node of the flow graph to n goes through 

6Since most machines have at least 16 byte instruction lines, this is not a limitation. 
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Figure 3: Possible extensions to the ISA and the CPU pipeline for instruction prefetches 

prefetch address(es), this offset is added to the current program counter to create an index into the 
indirect-target table. 

3.2 Impact on the Processor Pipeline 

Many recent processors have implemented instructions for data prefetching [2, 9, 14]. With respect 
to pipelining, our instruction prefetches differ in two important ways from data prefetches: (i) the 
pipeline stage in which the prefetch address is known, and (ii) the computational resources consumed 
by the prefetches. Figure 3(b) contrasts the pipeline for data prefetches in the MIPS R10000 [14] 
with the pipeline for our instruction prefetches in an equivalent machine. As we see in Figure 3(b), 
the prefetch address of a pf _d instruction prefetch (the mostly used type) is known immediately 
after the Decode stage (the other types of instruction prefetches would require some additional time), 
while the address for a data prefetch is not known until it is computed in the Address Calculate 
stage. Hence a pf _d instruction prefetch can be initiated two cycles earlier than a data prefetch. In 
addition, since instruction prefetches do not go through the latter three pipeline stages of a data 
prefetch (instead they are handled directly by the hardware instruction prefetcher after they are 
decoded), they do not contend for processor resources including functional units, the reorder buffer, 
register file, etc. In effect, the instruction prefetches are removed from the instruction stream as 
soon as they are decoded, thereby having minimal impact on most computational resources. 

3.3 Extensions to the Memory Subsystem 

Figure 4(a) shows our memory subsystem (only the instruction fetching components are displayed). 
The I-prefetcher is responsible for generating prefetch addresses and launching prefetches to the 
unified L2 cache for both hardware and software initiated prefetching. Prefetch-address generation 
involves simple extraction of prefetch addresses from pf _d prefetches, adding constant offsets to the 
current program counter (for next-JV line prefetching and pf_c prefetches), or retrieving prefetch 
targets from some hardware structures (for pf_r and pf_i prefetches). The I-prefetcher will not 
launch a prefetch to the L2 cache if the line being prefetched is already in the primary instruction 
cache (I-cache) or has an outstanding fetch or prefetch for the same line address. The auxiliary 
structures shown in Figure 4(a) include the return address stack and the indirect-target table used 
by pf _r and pf_i prefetches, respectively. These structures are not necessary if these two types of 
prefetches are not implemented. 

3.3.1     Prefetch Filtering Mechanism 

The prefetch filter sits between the I-prefetcher and the L2 cache to reduce the number of useless 
prefetches. In addition, a prefetch bit is associated with each line in the I-cache to remember whether 
the line was prefetched but not yet used, and a two-bit saturating counter value is associated with 



(a) Memory subsystem 

Processor 

i auxiliary 
! structures 

H-prefetcher 
I-cache 

Prefetch 
filter 

^ 

Data-fetching 
components 
are not shown 

Unified L2 cache 

Main memory 

Addresses & Controls Instructions 

(b) Example of prefetch filtering 
T    Initially, line A was prefetched but has not been used. 

Lines A and B map to the same line in the I-cache. 

_     _ —I-cache^—- a J 
ss1 

—L2 cache~ 

line A 
1 0 

m linpR £' 
HLinc B is prefetched and replaces line A. Line A's saturation 

•   counter is incremented. 

1 lineB 
1 1 

n 1 line R 

mThe processor prefetches line A and then uses line B. 
• The prefetch of line A is filtered out because line A's saturation 

counter has reached "11". Line B's prefetch bit is reset. 

line R 
1 1 

01 

Line A i1- fetched and replace1, line li. Line A\ «..nutation 
IV. counter is reset upon the letch. Line B's one is reset because 

its prefetch bil is /LTD when il IM replaced. 

line A 
on 
no linfiR 

Figure 4: The memory subsystem and an example of the prefetch filtering mechanism. 

(a) Prefetch bit of line L 

, [Invalid), 

IRO/       / \       \IR1 

F = Fetch L 
P = Prefetch L 
IR.v = Replace L in the I-cache 

while its prefetch bil is .r 
SR = Replace L in the S-cachv 

Invalid = I- (iocs not have a 
valid lag in the cacriL-. 
It \<i not an enuidud state. 

(b) Saturation counter of line L 
F,IR0 

F,P,IR0 

F,IR0 

P,IR1 

Figure 5: The states and transitions of (a) prefetch bits and (b) saturation counters under prefetch 
filtering. 

each line in the L2 cache to record the number of consecutive times that the line was prefetched 
but not used before it was replaced. The prefetch filtering mechanism works as follows. When a 
line is fetched from the L2 cache to the I-cache, both the prefetch bit and the saturating counter 
value are reset to zero. When a line is prefetched from the L2 cache to the I-cache, its prefetch bit 
is set to one and its saturation counter does not change. When a prefetched line is actually used 
by a fetch, its prefetch bit is reset to zero. When a prefetched line / in the I-cache is replaced by 
another line, then if the prefetch bit of line / is set, its saturation counter is incremented (unless it 
has already saturated, of course); otherwise, the counter is reset to zero. When the prefetch filter 
receives a prefetch request for line /, it will either respond normally if the counter value is below a 
threshold T, or else it will drop the prefetch and send a "prefetch canceled" signal to the processor 
if the counter has reached T (in our experiments, T = 3). Figure 4(b) shows an example of how 
the prefetch filtering mechanism works, and Figure 5 summarizes the states and transitions of the 
prefetch bit and the saturation counter for a particular cache line. 



void schedule_prefetches(£) { 
foreach basic block B in the executable E do 

schedule(B, B, 0, {}); 
} 

// Consider attaching a prefetch for T to B where: 
//    B = current basic block, T = prefetch-target basic block, 
//    D = the prefetching distance between B and T 
//    S = set of basic blocks scheduled so far 
//    SCHED-DIST = prefetch-scheduling distance 
//    N = the N used in hardware next-N-line prefetching 
void scheduled, T, D, S) { 

if (B £ S) { // continue only if B hasn't been scheduled 
S - S U {B}; 
// Attach a prefetch if it is sufficiently early and 
// if it is necessary. 
if ((D > SCHED-DIST) 

and not localityJikely(B, T) 
and not nextNline_prefetchable(B, T, N) 
and not prefetch_already_exists(B, T)) { 

attach.prefetch(S, T); 
} 
foreach basic block P which can reach B 

in a single direct control transfer do { 
// update prefetching distance conservatively 
D' = D + minJength(f); 
schedule(.P, T, D', S); 

} 

boolean locality Jikely(B, T) { 
// If B and T are in the same loop or recursive procedure 
// chain that accesses a very small volume of instructions 
// relative to the I-cache size, it is likely that T is already 
// in the I-cache when we are executing B.  In this case, 
// we return TRUE; otherwise return FALSE. 

} 

boolean nextNIine_prefetchable(£, T, N) { 
//Determine whether T is within N cache lines of B. 

} 

boolean prefetch^already_exists(JB, T) { 
// Check whether a prefetch for T is already attached to B. 

} 

void attach_prefetch(B, T) { 
// Insert a prefetch of T before the first instruction in B. 

} 

int min_length(I?) { 
// Return the number of instructions executed in basic block 
// B.  If B doesn't end with a procedure call, this is simply the 
// number of instructions in B; otherwise, this is the number 
// of instructions in B plus the length of the shortest path 
//from the beginning to the end of the procedure called by B. 

} 

Figure 6: Pseudo-code representation of our prefetch scheduling compiler algorithm. 

4    Compiler Support 

The compiler is responsible for automatically inserting prefetch instructions into the executable. 
Note that since prefetch insertion is most effective if it begins after the code is otherwise in its final 
form, this new pass occurs fairly late in the compilation: perhaps at link time, or in our case, we 
implemented it as a binary rewrite tool. The goal of the compiler is to schedule prefetches to achieve 
high coverage and satisfactory prefetching distances while at the same time minimizing the static 
and dynamic instruction overhead. Hence our compiler algorithm has two major phases: prefetch 
scheduling and prefetch optimization. Figure 6 shows a pseudo-code representation of our prefetch 
scheduling algorithm. After generating an initial prefetch schedule, the compiler then performs 
the four optimization passes described below, using the running example in Figure 7. A complete 
implementation of this algorithm was used throughout our experiments. 

Pass 1: Combining Prefetches at Dominators. This pass boosts prefetches that have been attached 
to a basic block 6 in the prefetch scheduling phase to b's nearest dominator (other than b itself) 
if the boosting is not harmful (it is harmful when the boosted prefetches will displace other useful 
instructions from the cache before b is referenced). After this boosting process, the compiler could 
combine some prefetches at dominators. For example, Figure 7(b) shows the result of combining 
the two prefetches of line y into one after boosting prefetches from basic blocks D, E, and F into their 
dominator C. 

Pass 2: Eliminating Unnecessary Prefetches. A prefetch instruction targeting a line / is unneces- 
sary if / resides in the I-cache on all possible paths reaching the prefetch instruction. To eliminate 
unnecessary prefetch instructions, the compiler estimates which lines reside in the I-cache at each 
prefetch instruction using an algorithm similar to the one for computing available expressions in 
classical code optimization [1]. In our case, the gen set of a basic block b is the set of lines fetched 
or prefetched by b while the kill set is the set of lines displaced by 6. In our example, since line z 
will definitely be in the I-cache when we enter basic block C regardless of whether we came from A 
or B, the prefetch of line z in C is unnecessary and therefore is eliminated, as shown in Figure 7(c). 



1. Combine 
prefetches 
at dominators 
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unnecessary 
prefetches 

3. Compress 
prefetches 

4. Hoist 
prefetches 

(a) Original schedule Final schedule 

Figure 7:  Example of prefetch optimization.   (A to F are basic blocks; x, 
addresses. C is a dominator of D, E, F, and C itself.) 

y and z are cache line 

Pass 3: Compressing Prefetches. The compiler checks whether multiple pf _d prefetches in the 
same basic block can be compressed into a single compact prefetch. For each basic block b, the 
compiler needs to compute the offsets between the starting address of b and the target addresses of 
all pf _d prefetches scheduled in b. It then attempts to fit these offsets into a minimum number of 
compact prefetch instructions. Our example assumes that the address offsets of both lines x and y 
are representable within 12 bits, and therefore the two pf _d prefetches in C are compressed into a 
single pf_c prefetch, as shown in Figure 7(d). 

Pass 4: Hoisting Prefetches. Finally, the compiler hoists prefetches scheduled inside a loop up to 
the nearest basic block that dominates but is not part of the loop, if the prefetches do not need 
to be re-executed at every iteration (which may not be the case if each iteration can access a large 
volume of instructions). In some cases, a pre-header block will be created for the loop to hold the 
hoisted prefetches. For example, in Figure 7(e), a pre-header C is created to immediately precede 
the header (i.e. C) of the loop containing C, D, E, and F to hold the hoisted pf_c prefetch. While this 
optimization does not reduce the code size, it can reduce the number of dynamic prefetches. 

5    Experimental Framework 

We performed our experiments on seven non-numeric applications which were chosen because their 
relatively large instruction footprints result in poor instruction cache performance. These applica- 
tions are described Table 2, and all of them were run to completion. 

We performed detailed cycle-by-cycle simulations of our applications on a dynamically-scheduled, 
superscalar processor similar to the MIPS R10000 [14]. Our simulator models the rich details of the 
processor including the pipeline, register renaming, the reorder buffer, branch prediction, branching 
penalties, speculative instruction fetching (including incorrect execution paths), the memory hier- 
archy (including tag, bank, and bus contention), etc. Table 3 shows the parameters used in our 
model for the bulk of our experiments (we vary the latency and bandwidth later in Section 6.6). 
As shown in Table 3, we enhanced the memory subsystem in a few ways relative to the R10000 to 
provide better support for instruction prefetching—e.g., we added an eight-entry victim cache [4] 
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Table 2: Benchmark characteristics. (Note: the "combined" miss rate is the fraction of instruction 
fetches which suffer misses in both the 32KB I-cache and the 1MB L2 cache.) 

Name Description Input Data Set 
Instructions 
Graduated 

Miss Rate 
I-Cache Combined 

Gcc The GNU C compiler 
drawn from SPEC92 

The stmt.i in the reference input set 136.OM 2.63% 0.10% 

Perl The interpreter of the Perl 
language drawn from SPEC95 

A Perl script called a2ps.pl which 
converts ascii to postscript 

41.4M 5.03% 0.06% 

Porky A SUIF compiler pass for 
simplifying and rearranging codes 

The compress95.c program in 
SPEC95 (default optimizations) 

86.8M 2.38% 0.06% 

Postgres The PostgreSQL database 
management system [15] 

A subset of queries in the 
Postgres Wisconsin benchmark 

46.OM 3.76% 0.16% 

Skweel A SUIF compiler pass for 
loop parallelization 

A program that computes Simplex 
(all optimizations) 

68.IM 2.22% 0.06% 

Tel An interpreter of the script 
language Tel version 7.6 

Tcltags.tcl which makes Emacs-style 
TAGS file for Tel source 

37.5M 2.78% 0.02% 

Vortex The Vortex object-oriented database 
program drawn from SPEC95 

A reduced SPEC95 input set 193.OM 6.48% 0.08% 

Table 3: Simulation parameters for the baseline architecture. 

Pipeline Parameters 

Fetch & Decode Width 8 sequential instructions, 
on the same cache line 

Issue & Graduate Width 4 
Functional Units 2 Integer, 2 FP, 

2 Memory, 2 Branch 
Reorder Buffer Size 32 
Integer Multiply 12 cycles 
Integer Divide 76 cycles 
All Other Integer 1 cycle 
FP Divide 15 cycles 
FP Square Root 20 cycles 
All Other FP 2 cycles 
Branch Prediction Scheme 2-bit Counters 

Memory Parameters 

Line Size 32B 
I-Cache 32KB, 2-way set-associative, 4 banks 
Inst. Prefetch Buffer 16 entries 
D-Cache 32KB, 2-way set-associative, 4 banks 
Victim Buffers 8 entries each for data and inst. 
Miss Handlers (MSHRS) 32 each for data and inst. 
Unified S-Cache 1MB, 4-way set-associative 
Primary-to-Secondary 
Miss Latency 

12 cycles (plus any delays 
due to contention) 

Primary-to-Memory 
Miss Latency 

75 cycles (plus any delays 
due to contention) 

Primary-to-Secondary Bandwidth 32 bytes/cycle 
Secondary-to-Memory Bandwidth 8 bytes/cycle 

and a 16-entry prefetch buffer [3]. Our prefetching buffer is similar to the one used in the Markov 
prefetching study [3], with the only difference being that when an entry is forced out of this buffer, 
we place it in the instruction cache rather than dropping it. Hence anything that enters the prefetch 
buffer eventually enters the instruction cache in our model—its primary purpose is to delay filling 
the instruction cache to help avoid cache conflicts. 

We compiled each application as a "nonshared" executable with -02 optimization using the 
standard MIPS C compilers under IRIX 5.3. We implemented our compiler algorithm as a standalone 
pass which reads in the MIPS executable and modifies the binary. However, since we did not have 
access to a complete set of binary rewrite utilities, we tightly integrated our compiler pass with 
our simulator so that rather than physically generating a new executable, we instead pass a logical 
representation of the new binary to the simulator which it can then model accurately. For example, 
the simulator fetches and executes all of the new instruction prefetches as though they were in a real 
binary, and it remaps all instruction layouts and addresses to correspond to what they would be in 
the modified binary. Hence we truly emulate the physical insertion of prefetches at the expense of 
decreased simulation speed. 

6    Experimental Results 

We now present results from our simulation studies. We start by evaluating the performance of our 
basic cooperative prefetching scheme (with only direct prefetches), and then evaluate the benefit of 
also adding indirect prefetches (i.e. pf _r and pf-i). Next, we examine the relative importance of the 
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Figure 8: Performance comparison of our basic cooperative prefetching scheme and the best per- 
forming existing schemes of individual applications (Nar = next-z-line prefetching, M = Markov 
prefetching, C = cooperative prefetching) 

two key components of our scheme: prefetch filtering and software-initiated prefetching. We then 
measure the impact of varying the prefetch-scheduling distance used by the compiler, and of our 
compiler's prefetch optimizations, on the code size and performance. We also quantify the impact 
of varying cache latencies and bandwidths on the performance of our scheme. Finally, we justify 
the hardware cost of cooperative prefetching. 

6.1    Performance of the Basic Cooperative Prefetching Scheme 

Our basic cooperative prefetching scheme includes compiler-inserted pf_d and pf_c prefetches, 
hardware-based next-8-line prefetching, and prefetch filtering. No pf_r or pf_i prefetches (and 
hence the required hardware structures) are used. A prefetch-scheduling distance of 20 instructions 
is used for all applications. 

Figure 8 shows the performance impact of cooperative instruction prefetching. For each appli- 
cation, we show two cases: the bar on the left is the best previously-existing prefetching scheme 
(seen earlier in Figure 1), and the bar on the right is cooperative prefetching (C). As we see in 
Figure 8, our cooperative prefetching scheme offers significant speedups over existing schemes (6.4% 
on average) by hiding a substantially larger fraction of the original instruction cache miss stall times 
(71% on average, as opposed to an average reduction of 36% for the best existing schemes). 

To understand the performance results in greater depth, Figure 9 shows a metric which allows 
us to evaluate the coverage, timeliness, and usefulness of prefetches all on a single axis. This figure 
shows the total I-cache misses (including both fetch and prefetch misses) normalized to the original 
case (i.e. without prefetching) and broken down into the following four categories. The bottom 
section is the number of fetch misses that were not prefetched (this accounts for 100% of the misses 
in the original case, of course). The next section (Late Prefetched Misses) is where a miss has been 
prefetched, but the prefetched line has not returned in time to fully hide the miss (in which case 
the instruction fetcher stalls until the prefetched line returns, rather than generating a new miss 
request). The Prefetched Hits section is the most desirable case, where a prefetch fully hides the 
latency of what would normally have been a fetch miss, converting it into a hit. Finally, the top 
section is useless prefetches which bring lines into the cache that are not accessed before they are 
replaced. 

Figure 9 shows that both cooperative prefetching and the best existing prefetching schemes 
achieve large coverage factors, as indicated by the small number of unprefetched misses. The main 
advantage of our scheme is that it is more effective at launching prefetches early enough. This is 
demonstrated in Figure 9 by the significant reduction in late prefetched misses, the bulk of which have 
been converted into prefetched hits. We also observe in Figure 9 that both cooperative prefetching 
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Figure 9: Breakdown of all I-cache misses, normalized to the original case. (O = original, Nx = 
next-x-line prefetching, M = Markov prefetching, C = cooperative prefetching). 

and existing schemes experience a certain amount of cache pollution since the sum of the bottom 
three sections of the bars adds up to over 100%. However, the prefetch filtering mechanism used 
by cooperative prefetching helps to reduce this problem, thereby resulting in a smaller total for 
the bottom three sections than the best existing scheme in all of our applications. In addition, 
Figure 9 shows another benefit of prefetch filtering: it dramatically reduces the number of useless 
prefetches. The reduction in total useless prefetches ranges from 2.4 in perl to 10.6 in tcl—on 
average, cooperative prefetching has achieved a sixfold reduction in useless prefetching. 

6.2    Adding Prefetches for Procedure Returns and Indirect Jumps 

Having seen the success of our basic cooperative prefetching scheme, we now evaluate the perfor- 
mance benefit of extending it to include the indirect prefetches—i.e. pf _r and pf _i prefetches for 
procedure returns and indirect jumps, respectively. Figure 10 shows the performance of five varia- 
tions of cooperative prefetching: the basic scheme (C); the basic scheme plus pf_r prefetches (SR); 
the basic scheme plus using hardware to prefetch the top three addresses on the stack at each pro- 
cedure return (HR); and two cases which include the basic scheme plus pf_i prefetches (SI and 
BI). Both schemes SR and HR use a 12-entry return address stack. While scheme HR has no 
instruction overhead, scheme SR has a better control over the prefetching distance via compiler 
scheduling. Scheme SI uses a 1 KB, 2-way set-associative indirect-target table where entry holds 
up to four target address; scheme BI uses a 16 KB, 4-way set-associative indirect-target table with 
16 targets per entry. 

As we can see in Figure 10, the marginal benefit of supporting indirect prefetches is quite small for 
these applications. Part of the limitation is that only a relatively small fraction (roughly 15%) of the 
remaining misses which are not handled by our basic scheme are due to either procedure returns or 
indirect jumps, and therefore the potential for improvement is small. In addition, since some indirect 
jumps can have a fairly large number of possible targets—e.g., more than eight, as we observe in 
perl and gcc—prefetching all of these targets could result in cache pollution. Prefetching indirect 
jump targets may become more important in applications where they occur more frequently—e.g., 
object-oriented programs that make heavy use of virtual functions, or applications that use shared 
libraries. Although two of our applications are written in C++ (porky and skweel), they rarely 
use virtual functions. Since our applications show little benefit from pf _r and pf _i prefetches, we 
do not use them in the remainder of our experiments. 
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Figure 11: Performance of four different combinations of prefetch filtering and compiler-inserted 
prefetching (N8 = next-8-line prefetching alone, N8+f = next-8-line prefetching with prefetch fil- 
tering, S = compiler-inserted prefetching alone without prefetch filtering, C = cooperative prefetch- 
ing). 

6.3    Importance of Prefetch Filtering and Software Prefetching 

Two components of the cooperative prefetching design contribute to its performance advantages: 
prefetch filtering and compiler-inserted software prefetching. To isolate the contributions of each 
component, Figure 11 shows their performance individually as well as in combination. The relative 
importance of prefetch filtering versus compiler-inserted prefetching varies across the applications: 
in tcl, prefetching filtering is more important, and in postgres, compiler-inserted prefetching is 
more important. In all cases, the best performance is achieved when both techniques are combined, 
and in all but one case this results in a significant speedup over either technique alone. Intuitively, 
the reason for this is that the benefits of prefetch filtering (i.e. avoiding cache pollution) and soft- 
ware prefetching (i.e. issuing non-sequential prefetches early enough) are orthogonal. Hence both 
components of our design are clearly important for performance and are complementary in nature. 
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Figure 12: Impact of prefetch optimization on (a) the static prefetch count and (b) the performance 
of cooperative prefetching. (U = unoptimized, D = combining prefetches at dominators, E = case 
D plus eliminating unnecessary prefetches, Z = case E plus compressing prefetches, H = case Z plus 
hoisting prefetches.) The y-axis of (a) is normalized to the number of instructions in the original 
executable. 
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Figure 13: Impact of the prefetch-scheduling distance on (a) the static prefetch count and (b) the 
performance of cooperative prefetching, (xx = a prefetch-scheduling distance of xx instructions is 
used in the compiler scheduling; the case 20 is the default for our basic cooperative prefetching.) 
The y-axis of (a) is normalized to the number of instructions in the original executable. 

6.4 Impact of Prefetching Optimizations 

To evaluate the effectiveness of the compiler optimizations in reducing the number of prefetches, 
we measured their impact both on code size and performance. Figure 12(a) shows the number 
of static prefetches remaining as each optimization pass is applied incrementally, normalized to 
the original code size. Without any optimization (U), the code size can be bloated by over 40%. 
Combining prefetches at dominators (D) dramatically reduces the prefetch count by more than 
a half in all applications except postgres. Eliminating unnecessary prefetches and compressing 
prefetches further reduces the prefetch count by a moderate amount. (Prefetch hoisting has no 
effect on the static prefetch count, and therefore is not shown in Figure 12(a).) Altogether, the 
prefetch optimizations limit the prefetch count to only 9% of the original code size on average. 

Figure 12(b) shows the impact of these optimizations on performance. As we see in this figure, 
combining prefetches at dominators results in a noticeable performance improvement in several 
cases (e.g., gcc, perl, and tcl). The other optimizations have a negligible performance impact. In 
fact, prefetch compression and hoisting sometimes degrade performance by a very small amount by 
changing the order in which prefetches are launched. 

6.5 Varying the Prefetch-Scheduling Distance 

A key parameter in our prefetch scheduling compiler algorithm is the prefetch-scheduling distance 
(i.e. SCHED-DIST in Figure 6). When choosing a value for this parameter, we must consider 
the following tradeoffs: we would like the parameter to be large enough to hide the expected miss 
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Figure 15: Impact of varying the bandwidth between the I-cache and L2 cache. (N4 = next-4- 
line prefetching, C = cooperative prefetching, C32 = cooperative prefetching with the original 
bandwidth which is 32 bytes/cycle). 

latency, but setting the parameter too high can increase the code size (since more prefetches must be 
inserted to cover a larger number of unique incoming paths) and increase the likelihood of polluting 
the cache. In our experiments so far, we have used a prefetch-scheduling distance of 20 instructions, 
which is roughly equal to the product of the expected IPC (~1.6) and the primary-to-secondary miss 
latency (> 12 cycles). To determine the sensitivity of cooperative prefetching to this parameter, 
we varied the prefetch-scheduling distance across a range of five values from 12 to 28 instructions, 
and measured the resulting impact on both code size and performance (shown in Figures 13(a) and 
13(b), respectively). 

As we observe in Figure 13(a), increasing the prefetch-scheduling distance can result in a no- 
ticeable increase in the code size. Fortunately, even with a prefetch-scheduling distance as large as 
28 instructions, the compiler is still able to limit the code expansion to less that 11% on average, 
due to the optimizations discussed in the previous section. In contrast, the performance offered 
by cooperative prefetching is less sensitive to the prefetch-scheduling distance, as we see in Fig- 
ure 13(b). While tel enjoys a 6% speedup as we increase this parameter from 12 to 28 cycles, the 
other applications experience no more than a 2% fluctuation in performance across this range of 
values. Hence we observe that performance is not overly sensitive to this parameter. 

6.6    Impact of Latency and Bandwidth Variations 

We now consider the impact of varying miss latencies and available bandwidth between the primary 
and secondary caches on the performance of cooperative prefetching. Recall that in our experiments 
so far, the primary-to-secondary miss latency has been 12 cycles (plus any delays due to contention). 
Figure 14 shows the performance of next-4-line and cooperative prefetching when this parameter 
is decreased to 6 cycles and increased to 24 cycles. (Note that the compiler's prefetch-scheduling 
distance was set to 12 and 28 instructions, respectively, for the 6-cycle and 24-cycle cases.) As we 
see in Figure 14, cooperative prefetching still performs well under both latencies, and results in even 
larger improvements as the latency grows. In the 24-cycle case, cooperative prefetching results in an 
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Figure 16: Performance comparison of cooperative prefetching and larger I-caches (C = a 32 KB 
I-cache with basic cooperative prefetching, xxK = a xx KB I-cache without prefetching.) The y-axis 
is normalized to the execution time of a 32 KB I-cache without prefetching. 

average speedup of 24.4%, which is double the average speedup of next-4-line prefetching (12.2%). 
Turning our attention to bandwidth, recall that our experiments so far have assumed a bandwidth 

of 32 bytes/cycle between the primary instruction cache and the secondary cache. Figure 15 shows 
the impact of decreasing this bandwidth to 16 bytes/cycle, and increasing it to unlimited bandwidth. 
(Note that the C32 case—cooperative prefetching with the original bandwidth of 32 bytes/cycle— 
is include on the same axis simply as a point of comparison.) There are two things to note from 
Figure 15. First, we see in Figure 15(a) that while reducing the bandwidth does degrade the 
performance of cooperative prefetching somewhat—from an average speedup of 13.3% to 12.5%— 
the overall performance gain still remains high. Hence cooperative prefetching can achieve good 
performance with realistic amounts of bandwidth. (Note that this bandwidth includes servicing 
data cache misses as well.) Second, in Figure 15(b) we observe that increasing the bandwidth 
beyond 32 bytes/cycle does not significantly improve the performance of cooperative prefetching 
(the average speedup only increases from 13.3% to 13.7%). Therefore cooperative prefetching is not 
bandwidth-limited, and it is more likely that it is limited by other factors (e.g., cache pollution, 
achieving a sufficient prefetching distance, etc.). 

6.7    Cost Effectiveness 

Having demonstrated the performance advantages of cooperative prefetching, we now focus on 
whether the additional hardware support is cost effective. One alternative to cooperative prefetch- 
ing would be to simply increase the cache sizes by a comparable amount. (Note that this is overly 
simplistic since the primary cache sizes are often limited more by access time than the amount of 
silicon area available.) For our baseline architecture, the additional storage necessary to support 
basic cooperative prefetching is 640 bytes at the level of the primary I-cache (128 bytes for the 
prefetch bits used by prefetch filtering, and 512 bytes for the prefetch buffer), and 8 KB for the 2-bit 
saturating counters added to the L2 cache. (We do not count the storage for prefetching indirect 
jumps because they are not used in basic cooperative prefetching.) 

Figure 16 compares the performance of a 32 KB I-cache with cooperative prefetching with that 
of three larger I-caches, ranging from 64 KB to 256 KB, without prefetching. It is encouraging that 
the average speedup achieved by cooperative prefetching (13.3%) is greater than that obtained by 
doubling the cache size from 32 KB to 64 KB (10.8%) despite of the substantially higher hardware 
cost of the larger cache. In addition, cooperative prefetching outperforms the 128 KB I-cache in 
three of the seven applications, and is within 2% of the performance with a 256 KB I-cache in five 
cases. Overall, cooperative prefetching appears to be a more cost-effective method of improving 
performance than simply increasing the I-cache size. 
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7    Conclusions 

To overcome the disappointing performance of existing instruction prefetching schemes on modern 
microprocessors, we have proposed and evaluated a new prefetching scheme whereby the hard- 
ware and software cooperate as follows: the hardware performs aggressive next-iV-line prefetching 
combined with a novel prefetch filtering mechanism to get far ahead on sequential accesses without 
polluting the cache, and the compiler uses a novel algorithm to insert explicit instruction-prefetch in- 
structions into the executable to prefetch non-sequential accesses. Our experimental results demon- 
strate that our scheme significantly outperforms existing schemes, eliminating 50% or more of the 
latency that had remained with the best existing scheme. This reduction in latency translates into a 
13.3% average speedup over the original execution time on a state-of-the-art superscalar processor, 
which is more than double the 6.5% speedup achieved by the best existing scheme, and much closer 
to the maximum 20% speedup (for these applications and this architecture) in the ideal instruction 
prefetching case. These improvements are the result of launching prefetches earlier (thereby hid- 
ing more latency), while at the same time reducing the cache-polluting effects of useless prefetches 
dramatically. Given these encouraging results, we advocate that future microprocessors provide 
instruction-prefetch instructions along with the prefetch filtering mechanism. 
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